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a b s t r a c t

Data have been assembled from the published literature on the enthalpies of solvation for 103 organic
vapors and gaseous solutes in 1-propanol and for 86 gaseous compounds in tetrahydrofuran. It is shown
that an Abraham solvation equation with five descriptors can be used to correlate the experimental
solvation enthalpies to within standard deviations of 2.35 kJ/mole and 2.10 kJ/mole for 1-propanol and
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tetrahydrofuran, respectively. The derived correlations provide very accurate mathematical descriptions
of the measured enthalpy of solvation data at 298 K, which in the case of 1-propanol span a range of
119 kJ/mole. Division of the experimental values into a training set and a test set shows that there is no
bias in predictions, and that the predictive capability of the correlations is better than 3.5 kJ/mole.

© 2011 Elsevier B.V. All rights reserved.

artition coefficient
olvation parameter model

. Introduction

Linear free energy relationship (LFER) models represent a
onsolidated computational method to mathematically correlate
hermodynamic transfer properties and permeabilities of chemical
ompounds to molecular features (called molecular descriptors)
hat range in type from topological and structural indices to
lectronic and quantum-chemical properties. Representative prop-
rties that have been correlated with LFER models include sorption
f organic compounds on polydimethylsiloxane coated fibers [1–3],
hromatographic retention times of organic compounds and drug
olecules on immobilized artificial membrane chromatographic

olumns [4–6], solute partitioning between water and an immisci-
le (or partly miscible) organic solvent [7–10], solute partitioning
etween two partly miscible organic solvents [11–14], drug distri-
ution from blood to the various body organs [15–20], permeability
f organic compounds through human skin from aqueous solu-
ion [21], brain permeation of neutral molecules and ionic species
22], and enthalpies of solvation of organic vapors and gases in
oth water [23] and in organic solvent media [23–32]. The molec-

lar descriptors may be of either experimental origin or calculated
ased solely on molecular structure considerations.

Previously we have applied the Abraham solvation parameter
odel to correlate experimental enthalpies of solvation of organic

∗ Corresponding author.
E-mail address: acree@unt.edu (W.E. Acree Jr.).

040-6031/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2011.02.042
vapors and gases in water, �Hsolv,w, [23]:

�Hsolv,w (kJ/mol) = −13.310(0.457) + 9.910(0.814) E

+2.836(0.807) S − 32.010(1.102) A

−41.816(0.781) B − 6.354(0.200) L

(N = 368, SD = 3.68, R2 = 0.964,

F = 1950.5) (1)

�Hsolv,w (kJ/mol) = −6.952(0.651) + 1.415(0.770) E

+2.859(0.855) S − 34.086(1.225) A

−42.868(0.850) B − 22.720(0.800) V

(N = 369, SD = 4.04, R2 = 0.959, F = 1688.2)

(2)

and in four alkanes (hexane [27], heptane [29], hexadecane [29]
and cyclohexane [29]), in two aromatic hydrocarbons (benzene
[29] and toluene [31]), in three chloroalkanes (trichloromethane
[30], tetrachloromethane [31] and 1,2-dichloroethane [30]), in

five alcohols (methanol [26], ethanol [26], 1-butanol [26], 1-
octanol [23] and tert-butanol [25]), and in seven other organic
solvents (acetone [24], propylene carbonate [32], dimethyl sul-
foxide [32], dibutyl ether [28], ethyl acetate [28], acetonitrile [24]
and N,N-dimethylformamide [25]). In total Abraham model, �Hsolv

dx.doi.org/10.1016/j.tca.2011.02.042
http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:acree@unt.edu
dx.doi.org/10.1016/j.tca.2011.02.042
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orrelations have been reported for total of 22 different organic
olvents. Expressions have also been developed for predicting the
nthalpies of solvation of organic vapors and gases into ionic liquid
olvents based on the ionic-specific equation coefficient [33] and
roup contribution [34] versions of the Abraham model.

Each term in Eqs. (1) and (2) represents a different type of
olute–solvent interaction contributing to the solute transfer pro-
ess. The independent variables are solute descriptors, which are
efined as follows: E denotes the solute excess molar refraction that
eflects the solute’s ability to interact with the surrounding solvent
olecules through �- and lone-electron pairs, S is the solute dipo-

arity/polarizability parameter, A and B are measures of the solute’s
ydrogen-bond acidity and basicity, V is the McGowan volume of
he solute in units of (dm3 mol−1)/100, and L is the logarithm of the
olute’s gas phase dimensionless Ostwald partition coefficient into
exadecane at 298 K. The first four descriptors can be regarded as
easures of the tendency of the given compounds to undergo var-

ous solute–solvent interactions. The latter two descriptors, V and
, are both measures of solute size, and so will be measures of the
olvent cavity term that will accommodate the dissolved solute.
eneral dispersions are also related to solute size; hence both V
nd L will also describe the general solute–solvent interactions.

Numerical values of the six equation coefficients in Eqs. (1) and
2) are determined by multiple linear regression analyses of exper-
mental �Hsolv data for a series of organic solutes and gases in
he solvent under consideration. The statistics of the derived cor-
elation are the number of experimental values in the regressed
atabase (N), the standard deviation (SD), the squared correlation
oefficient (R2) and the Fisher F-statistic. Standard uncertainties in
he calculated equation coefficients are given in parenthesis imme-
iately after the respective coefficient.

During the past two years we have been updating several of our
xisting gas-to-organic solvent partition coefficient, K, and water-
o-organic solvent partition coefficient, P, correlations [35–38], and
ntroducing additional terms into the equation (j+·J+ and j−·J−) that
nable the prediction of P values of neutral molecules, ions and
onic species at 298 K [39–41]. Previously log P the correlations had
een limited in applicability to just neutral molecules. As part of
hese studies we have determined solute descriptors for several
imple ions and several classes of organic ionic species (carboxy-
ate anions, substituted phenoxide anions, substituted pryridinium
ations and protonated amines). The descriptors for anions and
ations are E, S, A, B, and are exactly on the same scale as for neu-
ral molecules, together with an additional descriptor, J−, for anions
nd an additional descriptor, J+, for cations.

Our published Abraham model partition coefficient correlations
ave for the most part pertained to 298 K. Manufacturing and bio-

ogical processes are not restricted to 298 K, and there is a growing
eed to estimate gas-to-organic solvent and water-to-organic sol-
ent partition coefficients at other temperatures as well. From a
hermodynamic standpoint, �HSolv data can be used to estimate
he gas-to-condensed phase partition coefficient, K,

og K(at T) − log K(at 298.15 K) = −�HSolv

2.303R

(
1
T

− 1
298.15

)

(3

nd the water-to-organic solvent partition coefficient, P,

og P(at T) − log P(at 298.15 K) = −�Htrans

2.303R

(
1
T

− 1
298.15

)

(4)

t other temperatures from measured partition coefficient data
t 298.15 K and the solute’s enthalpy of solvation, �HSolv, or
nthalpy of transfer, �Htrans, between the two condensed phases.
ca Acta 519 (2011) 103–113

The enthalpy of transfer needed in Eq. (4) is defined as

�Htrans = �HSolv,Org − �HSolv,W (5)

the difference in the enthalpy of solvation of the solute in the spec-
ified organic solvent minus its enthalpy of solvation in water. The
above equations assume zero heat capacity changes. The 22 �Hsolv
correlations that we have developed thus far allow us to extrapo-
late log P and log K values measured at 298 K to other temperatures.
Eventually we hope to develop mathematical expressions for pre-
dicting enthalpies of solvation in most (if not all) of the more than
70 organic solvents for which we have log K and log P correla-
tions. The present study concerns developing a �Hsolv correlation
for solutes dissolved in 1-propanol and in tetrahydrofuran. The
log K and log P correlations for both organic solvents were recently
updated [35,38].

2. Data sets and solute descriptors

A search of the published chemical literature found a large
number of papers [42–140] that reported experimental partial
molar enthalpies of solution, �Hsoln, of liquid solutes in 1-propanol
and tetrahydrofuran, or excess molar enthalpies of binary mix-
tures containing either 1-propanol or tetrahydrofuran. The �Hsoln
data for the liquid solutes were determined by either direct
calorimetric methods or calculated based on the temperature
dependence of the measured infinite dilution activity coefficient
data. Calorimetric data was also found for the dissolution of a
few gases in tetrahydrofuran [141,142], and for five crystalline
organic solutes, ethylene carbonate [143], benzamide [144], ben-
zoic acid [145], 1-bromoadamantane [146] and 1-adamantanol
[147], in 1-propanol. Enthalpies of solution of several gas molecules
[148–155], anthracene [156], acenaphthene [157], adipic acid
[158], succinic acid [159] and sebacic acid [160] were calculated
from the variation of mole fraction solubility with temperature. The
�Hsoln values were converted to gas-to-organic solvent enthalpies
of transfer by

Liquid solutes : �HSolv = �HSoln − �HVap,298K (6)

Crystalline solutes : �HSolv = �HSoln − �HSub,298K (7)

subtracting the solute’s standard molar enthalpy of vaporization
[161,162], �HVap,298 K, or standard molar enthalpy of sublimation
[162,163], �HSub,298 K, at 298.15 K.

We eliminated from consideration all experimental data that
pertained to temperatures outside the temperature range of
283–318 K. Enthalpies of solvation are temperature-dependent,
and we did not want to introduce large errors in the database by
including experimental data far removed from 298 K. For several
solutes there were multiple, independently determined values. In
such cases, we selected direct calorimetric data over indirect val-
ues based on the temperature dependence of measured solubilities
or infinite dilution activity coefficients. Using the aforementioned
criteria, 103 molar enthalpies of solvation in 1-propanol and 86
molar enthalpies of solvation in tetrahydrofuran were selected for
regression analysis. The experimental �HSolv,PrOH and �HSolv,THF
values are listed in Tables 1 and 2 along with the values of the solute
descriptors of the compounds considered in the present study. The
tabulated solute descriptors are of experimental origin and came
from our solute descriptor database, which now contains values for
more than 5000 different organic and organometallic compounds.
Large tabulations of solute descriptors are available in several ear-

lier publications [23,165,166].

The characteristic McGowan volume, V, is calculated from the
individual atomic sizes and numbers of bonds in the molecule
[164]. For liquid solutes, the excess molar refraction descriptor, E,
is obtained from the liquid refractive index [167]. In the case of
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Table 1
Values of the gas-to-1-propanol solvation enthalpy in kJ/mole at 298 K, �Hsolv,PrOH, for 103 solutes, together with the solute descriptors.

Solute E S A B L V �Hsolv Refs.

Methane 0.000 0.000 0.000 0.000 −0.323 0.2495 −2.09 [149]
Ethane 0.000 0.000 0.000 0.000 0.492 0.3904 −10.33 [149]
Propane 0.000 0.000 0.000 0.000 1.050 0.5313 −18.60 [148]
2-Methylpropane 0.000 0.000 0.000 0.000 1.409 0.6722 −20.79 [148]
Butane 0.000 0.000 0.000 0.000 1.615 0.6722 −22.10 [148]
Pentane 0.000 0.000 0.000 0.000 2.162 0.8131 −25.39 [76]
Heptane 0.000 0.000 0.000 0.000 3.173 1.0949 −33.76 [149]
Octane 0.000 0.000 0.000 0.000 3.677 1.2358 −38.45 [70,86]
Nonane 0.000 0.000 0.000 0.000 4.182 1.3767 −43.75 [49]
Decane 0.000 0.000 0.000 0.000 4.686 1.5176 −47.35 [47,50]
Dodecane 0.000 0.000 0.000 0.000 5.696 1.7994 −58.09 [47]
2,3-Dimethylbutane 0.000 0.000 0.000 0.000 2.495 0.9540 −27.86 [46]
2,2,4-Trimethylpentane 0.000 0.000 0.000 0.000 3.106 1.2358 −33.37 [46]
Cyclohexane 0.305 0.100 0.000 0.000 2.964 0.8454 −31.14 [53]
Cyclooctane 0.413 0.100 0.000 0.000 4.329 1.1272 −40.98 [77]
1-Propene 0.100 0.080 0.000 0.070 0.946 0.4883 −18.75 [148]
1-Butene 0.100 0.080 0.000 0.070 1.491 0.6292 −19.78 [148]
cis 2-Butene 0.140 0.080 0.000 0.050 1.737 0.6292 −21.55 [147]
trans-2-Butene 0.126 0.080 0.000 0.050 1.664 0.6292 −21.39 [148]
2-Methyl-1-propene 0.120 0.080 0.000 0.080 1.579 0.6292 −21.67 [148]
1-Hexene 0.078 0.080 0.000 0.070 2.572 0.9110 −29.10 [42]
1-Heptene 0.092 0.080 0.000 0.070 3.063 1.0519 −34.00 [42]
1,3-Butadiene 0.320 0.230 0.000 0.100 1.543 0.5862 −20.93 [148]
Methanol 0.278 0.440 0.430 0.470 0.970 0.3082 −37.50 [97]
Ethanol 0.246 0.420 0.370 0.480 1.485 0.4491 −42.20 [71]
Propan-1-ol 0.236 0.420 0.370 0.480 2.031 0.5900 −47.50 �Hvap

Butan-1-ol 0.224 0.420 0.370 0.480 2.601 0.7309 −52.19 [71]
Pentan-1-ol 0.219 0.420 0.370 0.480 3.106 0.8718 −56.81 [71]
Hexan-1-ol 0.210 0.420 0.370 0.480 3.610 1.0127 −60.48 [61]
Octan-1-ol 0.199 0.420 0.370 0.480 4.619 1.2950 −70.07 [59,71]
Decan-1-ol 0.191 0.420 0.370 0.480 5.628 1.5763 −80.00 [60]
2-Propanol 0.212 0.360 0.330 0.560 1.764 0.5900 −45.52 [95]
Benzene 0.610 0.520 0.000 0.140 2.786 0.7176 −31.77 [81]
Toluene 0.601 0.520 0.000 0.140 3.325 0.8573 −35.98 [57]
1,4-Dimethylbenzene 0.613 0.520 0.000 0.160 3.839 0.9982 −40.50 [85]
Difluoromethane −0.320 0.490 0.060 0.050 0.040 0.2489 −9.41 [155]
Trifluoromethane −0.430 0.180 0.110 0.030 −0.274 0.3026 −12.50 [155]
Carbon tetrachloride 0.458 0.380 0.000 0.000 2.823 0.7391 −32.88 [66,67,139]
Chloroethane 0.227 0.400 0.000 0.100 1.678 0.5128 −23.50 [147]
2-Chloro-2-methylpropane 0.142 0.300 0.000 0.030 2.273 0.7946 −27.32 [56]
2-Chloro-2-methylbutane 0.171 0.270 0.000 0.150 2.858 0.9355 −32.93 [56]
2-Chloro-2-methylpentane 0.207 0.390 0.000 0.130 3.520 1.0764 −37.62 [56]
Trichloroethene 0.520 0.370 0.080 0.030 2.997 0.7146 −33.94 [72]
2-Methyl-2-bromopropane 0.305 0.290 0.000 0.070 2.609 0.8472 −29.81 [73,88]
2-Methyl-2-bromobutane 0.343 0.400 0.000 0.150 3.400 0.9881 −35.55 [88]
2-Methyl-2-iodopropane 0.589 0.350 0.000 0.190 3.439 0.9304 −33.37 [73]
1-Bromoadamantane 1.070 0.900 0.000 0.200 6.130 1.3668 −56.01 [145]
Acetone 0.179 0.700 0.040 0.490 1.696 0.5470 −25.00 [82]
2-Butanone 0.166 0.700 0.000 0.510 2.287 0.6879 −28.93 [78]
Dimethyl ether 0.000 0.270 0.000 0.410 1.285 0.4491 −18.30 [147]
Diethyl ether 0.041 0.250 0.000 0.450 2.015 0.7309 −26.10 [66]
Diisopropyl ether −0.060 0.160 0.000 0.580 2.530 1.0127 −32.46 [43,87]
Dibutyl ether 0.000 0.250 0.000 0.450 3.924 1.2950 −43.13 [62]
Butyl methyl ether 0.045 0.250 0.000 0.440 2.658 0.8718 −31.09 [63]
Methyl tert-butyl ether 0.024 0.210 0.000 0.590 2.380 0.8718 −28.64 [43,80,84]
Methyl tert-amyl ether 0.050 0.210 0.000 0.600 2.916 1.0127 −34.40 [43]
Tetrahydrofuran 0.289 0.520 0.000 0.480 2.636 0.6223 −28.97 [87]
Tetrahydropyran 0.275 0.470 0.000 0.550 3.057 0.7672 −34.44 [74,84]
1,4-Dioxane 0.329 0.750 0.000 0.640 2.892 0.6810 −30.79 [44,54]
15-Crown-5 0.410 1.200 0.000 1.750 6.779 1.7025 −70.22 [90]
Aniline 0.955 0.960 0.260 0.410 3.934 0.8162 −53.89 [79]
Argon 0.000 0.000 0.000 0.000 −0.688 0.1900 −1.67 [149]
Xenon 0.000 0.000 0.000 0.000 0.378 0.3290 −9.62 [150]
Nitrogen 0.000 0.000 0.000 0.000 −0.978 0.2222 1.17 [149]
Carbon monoxide 0.000 0.000 0.000 0.040 −0.836 0.2220 −1.72 [149]
Carbon dioxide 0.000 0.280 0.050 0.100 0.058 0.2809 −9.75 [154]
Oxygen 0.000 0.000 0.000 0.000 −0.723 0.1830 0.50 [149]
Ethyl acetate 0.106 0.620 0.000 0.450 2.314 0.7466 −29.88 [54]
Propyl acetate 0.092 0.600 0.000 0.450 2.819 0.8875 −33.81 [89]
Butyronitrile 0.180 0.900 0.000 0.360 2.548 0.6860 −31.80 [83]
Triethylamine 0.101 0.150 0.000 0.790 3.040 1.0538 −44.40 [48,51]
Chlorobenzene 0.718 0.650 0.000 0.070 3.657 0.8388 −39.49 [64]
Nitromethane 0.313 0.950 0.060 0.310 1.892 0.4237 −29.67 [44,68]
4-Methylpyridine 0.630 0.820 0.000 0.540 3.640 0.8162 −46.80 [52]
1,3-Dichlorobenzene 0.847 0.730 0.000 0.020 4.410 0.9612 −45.66 [75]
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Table 1 (Continued)

Solute E S A B L V �Hsolv Refs.

1,3-Dimethoxybenzene 0.816 1.010 0.000 0.450 5.022 1.1160 −52.05 [66]
Ethylbenzene 0.613 0.510 0.000 0.150 3.778 0.9982 −40.07 [58]
1,2-Dimethoxyethane 0.116 0.670 0.000 0.680 2.654 0.7896 −33.60 [54]
1,2-Diethoxyethane 0.008 0.730 0.000 0.790 3.310 1.0714 −40.00 [66]
Tetramethylsilicon −0.057 0.080 0.000 0.000 1.812 0.9179 −23.00 [55]
Tetramethyltin 0.324 0.110 0.000 0.100 2.651 1.0431 −30.46 [149]
Benzo-15-crown-5 1.055 1.940 0.000 1.590 9.403 2.0285 −82.42 [90]
Tributylamine 0.051 0.150 0.000 0.790 5.983 1.8992 −66.20 [51]
Carbon tetrafluoride −0.580 −0.260 0.000 0.000 −0.817 0.3203 −1.12 [151]
Sucinnic acid 0.370 1.320 1.030 0.710 3.951 0.8210 −95.70 [159]
Adipic acid 0.350 1.210 1.130 0.760 4.474 1.1028 −105.90 [158]
Sebacic acid 0.350 1.360 1.120 0.870 6.920 1.6664 −118.05 [160]
1,3-Diaminopropane 0.446 0.610 0.430 1.140 2.852 0.7309 −69.50 [91]
3,6,9-Trioxoundecane 0.040 0.870 0.000 1.200 4.815 1.4111 −51.40 [45]
Digylme 0.113 0.760 0.000 1.170 3.920 1.1301 −42.63 [65]
2,2,2-Trifluoroethanol 0.015 0.600 0.570 0.250 1.224 0.5022 −48.33 [94]
N-Methylformamide 0.405 1.360 0.400 0.550 2.863 0.5059 −51.21 [96]
Anthracene 2.290 1.340 0.000 0.280 7.568 1.4544 −72.34 [156]
Fluoromethane 0.070 0.350 0.000 0.090 0.057 0.2672 −8.12 [152]
Trimethylphosphate 0.113 1.360 0.000 0.930 3.850 0.9707 −40.50 [93]
Tributyl phosphate −0.100 0.110 0.000 1.260 7.539 2.2390 −79.71 [92]
Ethylene carbonate 0.381 1.250 0.000 0.580 2.670 0.5558 −31.70 [143]
Benzaldehyde 0.820 1.000 0.000 0.390 4.008 0.8730 −44.16 [69]
Acenaphthene 1.604 1.050 0.000 0.220 6.469 1.2586 −57.97 [157]
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1-Adamantanol 0.940 0.900 0.310
Quinoline 1.268 0.970 0.000
Benzamide 0.990 1.500 0.490
Benzoic acid 0.730 0.900 0.590

olid solutes, one either estimates a hypothetical liquid refractive
ndex using any of several available methods, or one can calcu-
ate E directly through the addition of fragments or substructures.
umerical values of the three remaining descriptors, S, A and B, are
etermined through regression analysis using available organic sol-
ent/water partition coefficients, chromatographic retention data,
olubilities and infinite dilution activity coefficients as described
lsewhere [168–172]. If one is unable to locate sufficient experi-
ental data for performing the fore-mentioned regression analysis,

ommercial software [173] is available for estimating the molec-
lar solute descriptors from the structure of the compound.
everal correlations [174,175] have been reported for calculating
he Abraham solute descriptors from the more structure-based,
opological-based and/or quantum-based descriptors used in other
SAR and LFER treatments. Moreover, van Noort et al. [176] pub-

ished an Abraham model correlation for estimating the L solute
escriptor

L = − 0.882 + 1.183 E + 0.839 S + 0.454 A + 0.157 B

+3.505 V

N = 4785, SD = 0.31, R2 = 0.992, F = 115279) (8)

rom known values of E, S, A, B and V. The authors cited a personnel
ommunication from Dr. Abraham as the source of Eq. (8).

. Results and discussion

We have assembled in Table 1 values of �HSolv,PrOH for 103
rganic vapors and gases dissolved in 1-propanol covering a
easonably wide range of compound type and descriptor value.
nalysis of the experimental data yielded the following two Abra-
am model correlation equations:

HSolv,PrOH (kJ/mole) = −8.713(0.462) − 2.593(1.086) E
+5.190(1.113) S − 53.042(1.210) A

−7.852(1.094) B − 8.108(0.193) L

(with N = 101, SD = 2.41, R2 = 0.989, F = 1678) (9)
0.660 5.634 1.2505 −74.59 [146]
0.540 5.457 1.0443 −58.65 [140]
0.670 5.767 0.9728 −81.53 [144]
0.400 4.510 0.9317 −74.77 [144]

�HSolv,PrOH (kJ/mole) = −0.114(0.801) − 12.428(1.272) E

+2.052(1.495) S − 55.258(1.571) A

−7.964(1.426) B − 30.202(0.955) V

(with N=103, SD = 3.13, R2 = 0.981, F = 986.2) (10)

All regression analyses were performed using Version 17 of the
SPSS statistical software. There is little intercorrelation between
the descriptors in Eqs. (9) and (10). Both correlations provide a
good statistical fit of the observed data with standard deviations
of 2.41 and 3.13 kJ/mole for a data set that covers a range of
about 119.0 kJ/mole. See Fig. 1 for a plot of the calculated values
�HSolv,PrOH based on Eq. (9) against the observed values. Eq. (9) is
the better equation statistically, and from a thermodynamic stand-
point Eq. (9) is the enthalpic derivative of the Abraham model’s
gas-to-condensed phase transfer equation. Eq. (10) might be more
useful in some predictive applications in instances where the L-
descriptor is not known. Eq. (10) uses the McGowan volume,
V-descriptor, which is easily calculable from the individual atomic
sizes and numbers of bonds in the molecule [164]. To our knowl-
edge, Eqs. (9) and (10) are the first expressions that allow one to
predict the enthalpy of solvation of gaseous solutes in 1-propanol.

In order to assess the predictive ability of Eq. (9) we
divided the 103 data points into a training set and a test
set by allowing the SPSS software to randomly select half of
the experimental points. The selected data points became the
training set and the compounds that were left served as the
test set. Analysis of the experimental data in the training set
gave

�HSolv,PrOH (kJ/mole) = −8.712(0.723) − 7.321(1.665) E
+7.590(1.889) S − 53.653(1.871) A

−8.950(1.690) B − 8.159(0.269) L

(with N = 52, SD = 2.70, R2 = 0.988, F = 767.4) (11)
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Table 2
Values of the gas-to-tetrahydrofuran solvation enthalpy in kJ/mole at 298 K, �Hsolv,THF, for 86 solutes, together with the solute descriptors.

Solute E S A B L V �Hsolv Refs.

Methane 0.000 0.000 0.000 0.000 −0.323 0.2495 −3.02 [153]
Ethane 0.000 0.000 0.000 0.000 0.492 0.3904 −13.74 [153]
Propane 0.000 0.000 0.000 0.000 1.050 0.5313 −16.69 [153]
Hexane 0.000 0.000 0.000 0.000 2.668 0.9540 −28.39 [128]
Heptane 0.000 0.000 0.000 0.000 3.173 1.0949 −33.38 [127]
Octane 0.000 0.000 0.000 0.000 3.677 1.2358 −37.55 [120,124]
Nonane 0.000 0.000 0.000 0.000 4.182 1.3767 −42.14 [120]
Decane 0.000 0.000 0.000 0.000 4.686 1.5176 −46.13 [101]
Dodecane 0.000 0.000 0.000 0.000 5.696 1.7994 −56.53 [123]
Tetradecane 0.000 0.000 0.000 0.000 6.705 2.0812 −64.36 [101]
3-Methylpentane 0.000 0.000 0.000 0.000 2.581 0.9540 −27.28 [124]
2,2-Dimethylbutane 0.000 0.000 0.000 0.000 2.352 0.9540 −24.83 [129]
2,3-Dimethylbutane 0.000 0.000 0.000 0.000 2.495 0.9540 −26.21 [129]
Cyclohexane 0.305 0.100 0.000 0.000 2.964 0.8454 −29.39 [112,113]
Methylcyclohexane 0.244 0.060 0.000 0.000 3.319 0.9863 −32.87 [112,127]
2,2,4-Trimethylpentane 0.000 0.000 0.000 0.000 3.106 1.2358 −32.90 [122,127]
Ethene 0.107 0.100 0.000 0.070 0.289 0.3474 −11.42 [153]
1-Hexene 0.078 0.080 0.000 0.070 2.572 0.9110 −29.18 [130]
Cyclohexene 0.395 0.200 0.000 0.100 3.021 0.8025 −32.33 [137]
Dichloromethane 0.387 0.570 0.100 0.050 2.019 0.4943 −34.17 [104]
Trichloromethane 0.425 0.490 0.150 0.020 2.480 0.6167 −39.62 [99,103]
Tetrachloromethane 0.458 0.380 0.000 0.000 2.823 0.7391 −35.72 [105]
1-Chlorobutane 0.210 0.400 0.000 0.100 2.722 0.7946 −34.46 [117]
1,1,2,2-Tetrachloroethane 0.595 0.760 0.160 0.120 3.803 0.8800 −57.03 [132,133]
Chlorocyclohexane 0.448 0.480 0.000 0.100 3.832 0.9678 −43.10 [112]
Trichloroethene 0.524 0.370 0.080 0.030 2.997 0.7146 −39.69 [134]
Tetrachloroethene 0.639 0.440 0.000 0.000 3.584 0.8370 −40.66 [134]
Dipropyl ether 0.008 0.250 0.000 0.450 2.954 1.0127 −34.60 [118]
Diisopropyl ether -0.060 0.160 0.000 0.580 2.530 1.0127 −31.40 [125]
Dibutyl ether 0.000 0.250 0.000 0.450 3.924 1.2945 −44.14 [118]
Methyl tert-butyl ether 0.024 0.110 0.000 0.630 2.380 0.8718 −29.97 [119]
Tetrahydrofuran 0.289 0.520 0.000 0.480 2.636 0.6223 −32.00 �Hvap

Methanol 0.278 0.440 0.430 0.470 0.970 0.3082 −33.90 [98]
Ethanol 0.246 0.420 0.370 0.480 1.485 0.4491 −37.99 [98]
1-Butanol 0.224 0.420 0.370 0.480 2.601 0.7309 −47.86 [117]
2-Propanol 0.212 0.360 0.330 0.560 1.764 0.5900 −38.23 [74]
1-Hexanol 0.210 0.420 0.370 0.480 3.610 1.0170 −56.98 [87]
1-Heptanol 0.211 0.420 0.370 0.480 4.115 1.1536 −61.76 [87]
1-Octanol 0.199 0.420 0.370 0.480 4.619 1.2950 −65.59 [87]
1-Nonanol 0.193 0.420 0.370 0.480 5.120 1.4354 −71.16 [87]
1-Decanol 0.191 0.420 0.370 0.480 5.628 1.5763 −75.31 [87]
2-Methoxyethanol 0.269 0.500 0.300 0.840 2.490 0.6487 −42.80 [138]
Acetonitrile 0.237 0.900 0.070 0.320 1.739 0.4042 −33.70 [121]
Butyronitrile 0.180 0.900 0.000 0.360 2.548 0.6860 −39.66 [116]
Benzene 0.610 0.520 0.000 0.140 2.786 0.7176 −35.24 [102]
Toluene 0.601 0.520 0.000 0.140 3.325 0.8573 −38.77 [102]
1,4-Dimethylbenzene 0.613 0.520 0.000 0.160 3.839 0.9982 −43.23 [114]
1,2,4-Trimethylbenzene 0.677 0.560 0.000 0.190 4.441 1.1391 −48.70 [107]
Anisole 0.710 0.750 0.000 0.290 3.890 0.9160 −48.93 [117]
Chlorobenzene 0.718 0.650 0.000 0.070 3.657 0.8388 −43.77 [109,100]
Fluorobenzene 0.477 0.570 0.000 0.100 2.788 0.7341 −37.60 [126]
Nitrobenzene 0.871 1.110 0.000 0.280 4.557 0.8906 −57.72 [66]
Benzyl chloride 0.821 0.860 0.000 0.140 4.353 0.9797 −52.75 [100]
Pyrrole 0.613 0.730 0.410 0.290 2.865 0.5770 −53.26 [102]
N-Methylpyrrole 0.559 0.790 0.000 0.310 2.923 0.7180 −41.56 [102,106]
Aniline 0.955 0.960 0.260 0.410 3.934 0.8162 −62.86 [66]
Helium 0.000 0.000 0.000 0.000 −1.741 0.0680 8.12 [153]
Neon 0.000 0.000 0.000 0.000 −1.575 0.0850 7.01 [153]
Argon 0.000 0.000 0.000 0.000 −0.688 0.1900 −0.04 [153]
Krypton 0.000 0.000 0.000 0.000 −0.211 0.2460 −3.39 [153]
Xenon 0.000 0.000 0.000 0.000 0.378 0.3290 −8.85 [153]
Hydrogen 0.000 0.000 0.000 0.000 −1.200 0.1086 4.48 [153]
Deuterium 0.000 0.000 0.000 0.000 −1.200 0.1100 6.01 [153]
Nitrogen 0.000 0.000 0.000 0.000 −0.978 0.2222 1.32 [153]
Carbon dioxide 0.000 0.280 0.050 0.100 0.058 0.2809 −17.02 [141]
Carbon tetrafluoride −0.580 −0.260 0.000 0.000 −0.817 0.3203 −0.02 [153]
Sulfur hexafluoride −0.600 −0.200 0.000 0.000 −0.120 0.4643 4.83 [153]
Pyridine 0.631 0.840 0.000 0.520 3.022 0.6753 −39.60 [131]
2-Methylpyridine 0.598 0.750 0.000 0.580 3.422 0.8162 −42.00 [131]
3-Methylpyridine 0.631 0.810 0.000 0.540 3.631 0.8162 −44.00 [131]
4-Methylpyridine 0.630 0.820 0.000 0.540 3.640 0.8162 −44.30 [131]
Triethylamine 0.101 0.150 0.000 0.790 3.040 1.0538 −33.30 [48]
Hexafluorobenzene 0.088 0.560 0.000 0.010 2.345 0.8226 −35.50 [136]
Sulfur dioxide 0.370 0.660 0.280 0.100 0.778 0.3465 −39.30 [142]
15-Crown-5 0.410 1.200 0.000 1.750 6.779 1.7025 −78.89 [135]
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Table 2 (Continued)

Solute E S A B L V �Hsolv Refs.

Phenol 0.805 0.890 0.600 0.300 3.766 0.7751 −71.00 [117]
4-Fluorophenol 0.670 0.970 0.630 0.230 3.844 0.7928 −74.61 [117]
1-Chloronaphthalene 1.417 1.000 0.000 0.140 5.856 1.2078 −68.35 [110]
1-Methylnaphthalene 1.337 0.940 0.000 0.220 5.802 1.2260 −60.24 [111]
Dimethyl carbonate 0.142 0.540 0.000 0.570 2.328 0.6644 −36.90 [108]
Diethyl carbonate 0.060 0.580 0.000 0.530 3.412 0.9462 −42.28 [108]
Diethylamine 0.154 0.300 0.080 0.690 2.395 0.7720 −33.27 [115]
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Dipropylamine 0.124 0.300 0.080
Hexanoic acid 0.174 0.630 0.620
Octanoic acid 0.150 0.640 0.620
4-Fluoroanisole 0.571 0.740 0.000

here is very little difference in the equation coefficients for the full
ataset and the training dataset correlations, thus showing that
he training set of compounds is a representative sample of the
otal data set. The training set equation was then used to predict

HSolv,PrOH values for the 51 compounds in the test set. For the
redicted and experimental values, we find SD = 2.26, AAE (aver-
ge absolute error) = 1.81 and AE (average error) = −0.10 kJ/mole.
here is therefore very little bias in using Eq. (11) with AE
qual to −0.10 kJ/mole. The training set and test set analyses
ere performed two more times with similar results. Training

nd test validations were also performed for Eq. (10). To con-
erve journal space, we give only the test set results. The derived
raining set correlation for Eq. (10) predicted the 51 experi-

ental �HSolv,PrOH values in the test set to within a SD = 3.14,
AE = 2.44 and AE = 0.01 kJ/mole Again, there is very little bias in

he predictions using Eq. (10) with AE equal to 0.01 kJ/mole. An

rror/uncertainty of ±2 kJ/mole in the enthalpy of solvation results
n an error of slightly less than 0.04 log units in extrapolating a log K
alue measured at 298.15 K to a temperature of 313.15. This level
f predictive error will be sufficient for most practical chemical and
ngineering applications.

Fig. 1. A plot of the calculated values of �HSolv,PrOH
0.690 3.351 1.0538 −40.13 [115]
0.440 3.697 1.0284 −71.78 [66]
0.450 4.680 1.3102 −82.88 [66]
0.280 3.904 0.9337 −51.84 [117]

In Table 2 are collected values of the enthalpies of solvation of
86 gaseous solutes in tetrahydrofuran. Preliminary analysis of the
experimental �HSolv,THF data yielded correlation equations having
very small b coefficients, would be expected from the molecular
structure considerations. Tetrahydrofuran does not have an acidic
hydrogen. The b-coefficients were set equal to zero, and the final
regression analyses performed to give:

�HSolv,THF (kJ/mole) = −6.040(0.437) + 3.640(1.223) E

−14.478(1.252) S − 40.652(1.455) A

−8.537(0.150) L

(with N = 86, SD = 2.10, R2 = 0.990, F = 1997) (12)

�HSolv,THF (kJ/mole) = 4.777(0.894) − 6.642(1.146) E
−23.110(1.502) S − 43.222(1.764) A

−33.683(0.724) V

(with N = 86, SD = 2.55, R2 = 0.985, F = 1346) (13)

based on Eq. (9) against the observed values.
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Fig. 2. A plot of the calculated values of �HSo

oth Eqs. (12) and (13) are statistically very good with standard
eviations of 2.10 and 2.55 kJ/mole for a dataset that covers an
pproximate range of 91.0 kJ/mole. Both equations were vali-
ated through training and test set analyses. Fig. 2 compares
he calculated values of �HSolv,THF based on Eq. (12) against the
bserved data. To our knowledge there has been no previous
ttempt to correlate enthalpies of solvation for gaseous solutes in
etrahydrofuran.

The predictive ability of Eq. (13) was assessed as before by allow-
ng the SPSS software to randomly divide the 86 experimental data
oints into training and test sets. Analyses of the experimental data

n the training set gave

HSolv,THF (kJ/mole) = −6.549(0.596) + 5.800(1.797) E

−15.407(1.876) S − 42.258(2.357) A

−8.448(0.186) L

(with N = 43, SD = 1.94, R2 = 0.990, F = 942.6) (14)

here is very little difference in the equation coefficients for the
ull dataset and the training dataset correlations, thus showing
hat the training set of compounds is a representative sample of
he total data set. The training set equation was then used to pre-
ict �HSolv,THF values for the 43 compounds in the test set. For the
redicted and experimental values, we find SD = 2.44, AAE = 1.97
nd AE = 0.35 kJ/mole. There is therefore very little bias in using
q. (14) with AE equal to 0.35 kJ/mole. The training set and test
et analyses were performed two more times with similar results.
raining and test validations were also performed for Eq. (13). To

onserve journal space, we give only the test set results. The derived
raining set correlation for Eq. (13) predicted the 43 experimental

HSolv,THF values in the test set to within a SD = 3.03, AAE = 2.26 and
E = 0.54 kJ/mole. Again, there is very little bias in the predictions
sing Eq. (13) with AE equal to 0.54 kJ/mole.
ased on Eq. (12) against the observed values.

The correlations presented in this study further document the
applicability of the Abraham solvation parameter model to describe
enthalpies of solvation for organic vapors and gaseous solutes dis-
solved in organic solvents. The derived �HSolv correlations for
1-propanol and tetrahydrofuran will allow one to extrapolate gas-
to-PrOH(or THF) and water-to-PrOH(or THF) measured at 298.15 K
to other temperatures. Not all manufacturing applications occur at
298.15 K, and there is a growing need in the chemical industry to
predict solute transfer and partition properties at other tempera-
tures as well.
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